
LLNL-JRNL-580932

Determination of Performance
Characteristics of Scientific Applications
on Blue Gene/Q

C. Evangelinos, R. E. Walkup, V. Sachdeva, K. E.
Jordan, H. Gahvari, I. H. Chung, M. P. Perrone, L. Lu,
L. K. Lu, K. Magerlein

September 13, 2012

IBM Journal of Research and Development

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

 1

Determination of Performance Characteristics of Scientific Applications on
Blue Gene/Q

C. Evangelinos, R.E. Walkup, V. Sachdeva, K.E. Jordan, H. Gahvari, I-H. Chung, M.P. Perrone,
L. Lu, L-K. Liu, K. Magerlein

The IBM®Blue Gene®/Q (BG/Q) platform presents scientists and engineers with a rich set of
hardware features: e.g. 16-cores per chip sharing an L2-cache, a wide SIMD unit, a 5-
dimensional torus network, and hardware support for collective operations. An especially
important feature is that the cores have 4 "hardware threads", which makes it possible to hide
latencies and obtain a high fraction of the peak issue rate from each core. All of these hardware
resources present some unique performance tuning opportunities on BG/Q. We provide an
overview of several important applications and solvers and study them on BG/Q using
performance counters and MPI profiles. We discuss how BG/Q tools help us understand the
interaction of the application with the hardware and software layers, and provide guidance for
optimization. Based on our analysis we discuss code improvement strategies targeting BG/Q.
Information about how these algorithms map to the Blue Gene architecture is expected to impact
future system design as we move to the Exascale era.

1. Introduction

The Blue Gene®/Q (BG/Q) platform is the next generation of the Blue Gene family of IBM
supercomputers. It continues the tradition of low power, high density, reliability, and extreme
scalability. Like its predecessors Blue Gene®/L (BG/L) and Blue Gene®/P (BG/P) its processor is
based on a low power PowerPC core not intended for the enterprise market, extensively modified
and enhanced by the addition of high performance computing (HPC)-targeted hardware features.

As part of the “bringup” and early testing for BG/Q, IBM Research was involved in porting and
optimizing several scientific and engineering codes to BG/Q from its main US-based partners
Lawrence Livermore (LLNL) and Argonne (ANL) National Labs as well as other customers.
Traditional programming methods, message passing interface (MPI) and OpenMP, are supported
on BG/Q, and our experience has been that porting codes to BG/Q is normally a simple process.
Given the enhancements in the runtime environment for BG/Q, even codes that required
modifications to run on BG/P could more easily be setup to run on BG/Q. Optimizing for
performance, however, is a bit different.

The PowerPC A2 core in BG/Q is an in-order 64-bit core running at 1.6 GHz with Simultaneous
Multi-Threading (SMT) capability using four hardware threads. The A2 core is a very simple
core by current standards. It has two execution units: XU, the integer/load/store unit and AXU,
the floating-point unit. When a single thread is running, the A2 core can issue at most one
instruction per cycle. By using two or more hardware threads, the core can issue up to two
instructions per cycle, one from each of the two execution units. With four hardware threads
available on each core, there is ample opportunity for some thread to make progress if others are
stalled. This design has the consequence that effective use of the four hardware threads is the
key to getting the best overall application performance. On BG/Q, the performance per-thread is
low by design, and it is necessary to make use of a large number of threads to obtain high

 2

performance. In contrast, most current SMT-capable processors (IBM Power6/7 and Intel Core
i3/5/7 families) have multiple execution units, and can issue more instructions per cycle, and
operate at higher clock frequencies. The BG/Q core can provide excellent power efficiency, but
that comes at a programming cost because a higher degree of parallelization is required to obtain
comparable performance to systems that have faster, less power-efficient cores.

The floating-point unit is designed to handle 4-wide SIMD (QPX) instructions leading to a peak
performance of 4 x 2 x 1.6=12.8 Gflop/s per core. To obtain a high fraction of peak, at least two
threads must be active so that both execution units can be kept busy issuing loads/stores and
address calculations, along with multiply-adds. Each core has a dedicated 16 KB L1 D-cache (64
byte lines) and an L1P prefetch buffer with a capacity of 32 lines (128 bytes long), with a ~24
cycle latency. The BG/Q node has one chip with 16 A2 cores (plus one for the OS and one
spare), and a 32 MB shared L2 cache with a latency of ~84 cycles and up to ~300 GB/s effective
bandwidth. There is 16GB of main memory per node, with ~350 cycle latency and ~28.5 GB/s
memory bandwidth achievable in streaming mode. BG/Q nodes are interconnected by a 5D torus
network with a 2GB/s bandwidth on each of 20 links to neighboring nodes (as opposed to the
combination of a 3D torus and a “collective” tree network in BG/L and BG/P).

Compared to Blue Gene/P, the theoretical peak floating point speed is ~15 x more per node (4x
cores per node, 2 x SIMD width and 1.88 x the frequency) while the sustained memory
bandwidth is ~3 x more per node. The application performance ratio varies depending on
resources used, but typical numbers for the LLNL and ANL set of production codes are ~8 x
more performance per node on BG/Q relative to BG/P.

The paper is organized as follows: In section 2 we present our tools for performance analysis on
BG/Q. We then proceed in section 3 to illustrate what was learned through the use of these tools
about several HPC applications ported to BG/Q. In section 4 we go into a more detailed analysis
illustrating the main challenges and remaining issues for some applications still being tuned for
BG/Q. We summarize the performance information in section 5 and try to draw more general
conclusions on the likely performance characteristics of existing scientific applications on BG/Q
and the algorithmic and coding changes that may be beneficial going forward on this and future
platforms with similar hardware attributes.

2. BG/Q performance analysis

2.1 MPI profiling on BG/Q

MPI (Message Passing Interface) provides a profiling interface which makes it possible to
instrument MPI routines, and obtain detailed information about communication. Our internal
IBM Research MPI profiling tool (libmpitrace/libmpihpm) [1] for BG/Q outputs performance
summary data at the end of application execution, when MPI_Finalize() is called. In that
sense it is quite similar to the mpiP [2], IPM [3], FPMPI [4] , MPInside [5], and other
performance tools. “Mpitrace” allows the option of collecting a detailed trace for MPI events
(usually provided by separate - higher overhead - tools). The choice of what events to monitor or
not and how to display them is controlled via environment variables and the tool simply requires
relinking. Additionally it provides the option of adding start and stop statements in the code for

 3

fine tuning of what is being counted or traced. In our experience unless one is tracing or very
latency sensitive, the overhead is usually small enough to allow using it in production mode. By
default it produces an MPI summary for the processes with the least, the most and the median
communication time as well as process 0.

The libmpitrace tool for BG/Q has been designed with extreme scalability in mind and tested at >
1 million MPI ranks. At that scale care is required to reduce or eliminate arrays that are
dimensioned by the number of ranks, otherwise memory utilization can limit scalability; and of
course the number of output files must be kept to a manageable level.

2.2 Hardware performance counters

BG/Q has a good set of hardware counters that can provide detailed information about work
done by the processor cores, the memory sub-system, and the network. The BG/Q system
software includes a BGPM layer for access to the performance monitor data. In practice it is
useful to provide a thin layer, called HPM, on top of BGPM that can be easily called from
Fortran, C, or C++. Portable interfaces like PAPI [6] are also supported but not used by our
tools. The collection of hardware counter data was integrated with the MPI profiling software
introduced above. That enables MPI to be used for data reduction, so that simple derived metrics
can be provided directly, without post-processing more primitive counter output. On BG/Q there
are separate counters for each hardware thread on every core, but the counters for the L2 cache
and memory sub-system are shared across the node. Most applications use multiple MPI
processes on each node, and so it is convenient to use MPI to collect node-wide aggregate
counter data for analysis. Certain predefined groups of events (selectable via an environment
variable) can be counted to provide more user-friendly derived information like instruction
throughput, cache-hit rates and DDR traffic. The counting starts at MPI_Init() and ends at
MPI_Finalize() if the transparent (re-linking only) approach is chosen. Alternatively the
user can insert (nested named) start or stop statements in the source code to also investigate
specific code regions.

2.3 Gprof and profil() on BG/Q

Traditional interrupt-driven profiling is provided on BG/Q – via the gprof mechanism (-pg) or
the profil() routine. The overhead of -pg when used during compilation can be significant, but if
used only at link-time, the overhead is normally small. The profil() routine is included in the
system software stack, and can be used directly or with other profiling packages. However, for
multi-threaded applications, the profil() routine provides data for only the master thread, while
the –pg approach has been customized for BG/Q to support profiling for multiple threads. The
mpitrace tool has integrated support for profil() and uses the same mechanisms employed for
MPI and performance counter profiling to automatically present the user with profiles for the
processes taking the most, the least and the median time as well as process 0.

2.4 Performance data repository

 4

In order to characterize High Performance Computing (HPC) applications and to understand the
system usage, we have implemented a performance data repository. The modified performance
tools such as HPM and MPI profiler inject data into this performance data repository which is
hosted using an SQL compatible database. This allows the merging of performance data from
various source (systems and users). This consolidated performance data repository allows us to
perform data mining more efficiently by using queries generated via a spreadsheet or a web page
interface. As this repository is being populated it is helping architecture designers to realize how
codes utilize the hardware (see Figure 2); thus it is expected to facilitate co-design for next
generation HPC systems.

3. Application Performance

In this section we describe results of our performance characterization for several scientific
codes. The results are partly still in flux due to the early state of compilers, the OpenMP runtime
and the messaging libraries. Access to fast parallel I/O was generally very limited and we have
tried to exclude I/O from our results and analysis.

3.1 LLNL Sequoia Benchmarks

The LLNL Sequoia benchmark codes [7] were used regularly from the earliest stages of
hardware availability. The five “tier 1” benchmarks are all constructed as weak-scaling
benchmarks that can be tested from a single process or thread out to many thousands of
processes.

3.1.1 Radiation Transport: IRS

IRS [8], stands for Implicit Radiation Solver. It is a code written in C which solves the radiation
transport equation with a flux-limited diffusion approximation with an implicit matrix solution
for which it uses a preconditioned conjugate gradient method, and is a hybrid (MPI/OpenMP)
code. It is run in a weak scaling mode as per the benchmark instructions. Our analysis of IRS
showed the following main performance issues: (1) A memory access limitation in the
rmatmult3() routine (multiplying many arrays concurrently) – the original loops had too many
streams for the prefetch hardware to handle. The first optimization was to split the loop into a
number of stages, to limit the number of streams. Extra stores and loads are required in that
approach, but the overall performance improved significantly because the hardware prefetch
mechanism could be used. (There is a limit of about 16 streams per core with default
parameters). (2) Some additional performance was obtained by re-writing the code so that the
compiler could recognize data that could be loaded once and re-used. (3) Part of the code as
provided exhibited communication overhead scaling linearly with the number of MPI tasks; for
large enough number of tasks this became important. This was identified using our tools and
corrected a small constant value. The net speedup achieved by optimizing was about 2 x for 1-
rack of BG/Q.

3.1.2 Radiation transport: UMT

 5

UMT [9] is a deterministic multigroup 3D photon transport code for unstructured meshes also
using mixed MPI and OpenMP. The code employs a mix of C++, C, Fortran90, and Python, and
solves the first-order form of the steady-state Boltzmann transport equation. The benchmark
rules required testing for both strong and weak scaling. UMT originally had just one OpenMP
parallel region, which included the main computational routine, snswp3d. One might think that
code generation in that routine would be the focus. However, our analysis shows that
performance in that section is limited by bandwidth to memory, not code generation by the
compiler (or by hand tuning). Figure 1 shows the performance as a function of the number of
threads per core, with and without QPX instructions generated by the compiler. Although the
QPX improvement is significant at one thread per core, one hits the bandwidth limit at two
threads per core. In contrast, code with scalar instructions continues to improve with additional
threads, reaching nearly the same performance plateau with four threads per core.

The more successful tuning strategy for UMT involved improving the OpenMP coverage so that
as much of the code as possible could fully utilize the available hardware threads.

3.1.3 Molecular Dynamics: LAMMPS

LAMMPS [10] (Large-scale Atomic/Molecular Massively Parallel Simulator) is a C++
molecular dynamics (MD) code from Sandia that has been widely used in academia and industry.
The code as provided uses MPI as the parallelization strategy, without threading or OpenMP
(later versions of LAMPPS now have some OpenMP acceleration as an option). The benchmark
problem (classical MD EAM run in weak scaling mode) involved embedded-atom potentials,
which have excellent locality, with nearest-neighbor communication in three dimensions. This
code can use all of the hardware threads on BG/Q with 64 MPI ranks on each node. Excellent
scaling of LAMMPS to over 1 million MPI ranks was demonstrated using this method. At that
scale (16 racks of BG/Q), it is best to specify a three-dimensional process grid that fits naturally
onto the 5D torus network. For example, the 16-rack BG/Q block has dimensions
<A,B,C,D,E,T> of <16,8,8,8,2,64>, which can be grouped into an effective 3D topology of
<128,128,64>.

For experimental purposes, OpenMP was introduced for force-evaluation, neighbor-list, and
coordinate/velocity updates. This allows for a comparison between the pure MPI and hybrid
MPI + OpenMP methods. In Table 1 we compare the different programming methods (pure
MPI vs. hybrid). In this particular example (512 nodes of BG/Q), the hybrid method was about
7% faster. As can be seen in Table 1, there is somewhat less contention for L1 D-cache with the
hybrid code, but overall the two approaches have very similar characteristics. Generally
speaking, the main motivation for the hybrid programming method is to enable access to all of
the hardware threads in applications where that would not be possible with an MPI-only
approach (often due to memory limitations). In cases where both methods are workable, there is
often a small advantage for the hybrid version.

3.2 ANL applications

 6

A set of ten science applications were chosen by Argonne National Labs for performance
evaluation on BG/Q. They are all covered in a companion paper in this issue – but we describe in
a little more detail two of them that present extra interest – the overall performance of the
applications compared on a per-node basis to BG/P (same number of cores used or same amount
of total memory) can be seen in Table 2 showing an improvement ranging from 6x to almost
17x.

3.2.1 Atmospheric Climate Simulations: HiRAM

HIRAM stands for High-Resolution Atmosphere Model and is based upon a widely used Climate
code (in our case employing a Cubed-Sphere Non-Hydrostatic Dynamical Core) from the
Geophysical Fluid Dynamic Laboratory (GFDL) [11]. The particular configuration studied is the
classical Held-Suarez [12] benchmark run in strong scaling mode.

This problem uses a grid with 2560 points in each of the two dimensions, on six faces of the
cube, for a total of about 39 million grid points, each with 32 vertical levels. Such a high
resolution model can make good use of a large number of processes and/or threads. The code is
OpenMP enabled, with most of the OpenMP constructs distributing work over the vertical layers,
or over one of the lateral dimensions. With one rack of BG/Q, excellent performance was
obtained using eight MPI ranks per node, with 8 OpenMP threads per MPI rank. Due to the
cubed-sphere geometry, the number of MPI ranks must be a multiple of 6, not a power of two.
However, one can choose decompositions that use almost all of the processors in a power-of-two
BG/Q partition. For the 1-rack job, we chose a decomposition of 6 x 44 x 31 = 8184 MPI ranks
and 8 OpenMP threads per rank, for a total of 65472 threads. Scaling of the main computational
loop remained linear, with ~3% of the time spent in communication when using the full rack.
This application can scale out much further. A comparison with a similar job on BG/P (same
code, same 6 x 44 x 31 MPI decomposition, but the maximum of 4 possible OpenMP threads)
indicated a performance ratio of ~14 x for a node-to-node comparison; i.e. one rack of BG/Q
(16K cores) was significantly faster than 8 racks of BG/P (32K cores).

The cubed-sphere model has a small load imbalance due to the non-uniform decomposition of
the grid and the underlying science. This can be clearly seen in the MPI timing data: processes
with the least work spend more time waiting (for the processes with the most work). There is a
small additional amount of work for processes that have land-points vs. ocean points.

3.2.2 Computational Fluid Dynamics: DNS3D

DNS3D [13] is a computational fluid dynamics (CFD) code employing direct numerical
simulation (DNS) of Navier-Stokes equations to solve turbulent viscous flow for the idealized
case of a periodic 3D domain. The method employed is pseudo-spectral in space and 4th order
RK in time. The code is Fortran and MPI-only and relies on the P3DFFT [14] library for the
parallel 3D FFTs and on FFTW or ESSL for the actual underlying 1D FFT. The 3D FFT
approach of the P3DFTT handles the inherent scalability limitation of the usual “slab” approach
of 3D FFT decompositions by converting to a “pencil” decomposition and relies on
MPI_Alltoallv(). All-to-all represents a communication pattern that stresses networks and
is challenging for most topologies. For the problem sizes (in weak scaling mode) that were

 7

investigated the memory footprint per rank is small enough that one can run in a mode of using
64 MPI tasks per node.

The 5D torus network on BG/Q proved to be very successful in handling such a challenge. For a
20483 problem on 8192 cores (32768 MPI tasks) a speedup of 16.9 over BG/P was observed
(more than the 15 ratio in peak flop/s). In fact one sees that while using the same number of
physical cores (16 per node, 512 nodes) overall DNS solver time decreases from 3421.80 s to
2424.00 s to 1849.00 s (16, 32 and 64 MPI tasks per node) and the time per timestep drops from
16.61s to 12.12 s to 10.33 s – all this extra performance coming “for free” from SMT.

In our experience the 4-way SMT on BG/Q is very effective at hiding stalls due to data-
dependencies (pipeline stalls) and/or stalls due to waiting for the memory subsystem. On the
other hand, applications that have a very high memory-bandwidth requirement can hit that limit
with one thread per core. The hardware counters on BG/Q can identify those situations.

3.3 European Applications

3.3.1 Meteorology: MESO-NH

MESO-NH [15] is a gridpoint limited area non-hydrostatic atmospheric meteorological model. It
has been in development in France since the 1990s. The code has been parallelized for massive
parallel processors (MPPs) and uses 3D fast Poisson (FFT-based) solvers for the (elliptic)
pressure equation hence global array transposes (all-to-all based) are necessary. Also global
reductions have to be used and are the other main collective call involved. Finally the code is
fairly I/O dependent – this showed up in the profiles as an imbalance in MPI communications
used to distribute input data (MESO-NH does not use parallel I/O and our I/O subsystem was
still in its infancy and thus quite under-performing at the time). The benchmark problem was run
in strong scaling mode.

We were unable to run more than 16 MPI tasks per BG/Q node for the benchmark problem size
of 3456x3456x128 as the minimum memory footprint was too large to support 2 MPI tasks per
core. Hence the only way to utilize the 4 hardware threads on the BG/Q cores was to add
OpenMP or to attempt to use asynchronous communication threads (or both).

The benchmarking rules precluded code-changes but MESO-NH proved to be fairly amenable to
automatic parallelization by the compiler. With the auto-parallelized code, the overall runtime
dropped from 712s to 565s on 8192 MPI processes (1 process per physical core). Adding the use
of asynchronous communication threads decreased the overall benchmark runtime to 538s. The
profile of the code was fairly flat – the only “hot” spot at ~10% of runtime was a limiter of a
variable: this evaluated an if statement for every gridpoint at every timestep and could not be
refactored in a way that did not kill performance. Multithreading the loop however helped reduce
the branch penalty. One can expect to do even better with manual OpenMP parallelization that
avoids the extra overhead usually seen in autoparallelized codes.

4. A Deeper Look into Applications and Algorithms

 8

Having seen the performance characteristics of a variety of scientific codes on BG/Q we proceed
to look in more depth in this section in three different codes still being tuned for BG/Q that
represent both important current and future application areas as well as different algorithmic
approaches to the use of HPC. ROSETTA is an example of a class of highly parallel biology
computations that employ machines as massive high-throughput compute engines but still
require communication to distribute work and collect results. Efficient utilization of BG/Q
motivates reducing the number of MPI processes and introducing threading. AMG2006 is
indicative of a very popular family of solvers based on algebraic multigrid methods and lessons
learned for AMG2006 are expected to be of wider use regarding efficiently using multigrid on
multicore/manycore processors as well as optimizing it for hybrid (MPI-OpenMP) use. Finally
the revere time migration (RTM) algorithm is representative of a large class of geophysical
elasticity problems involving very large 3D stencils of great practical use in industry. RTM
motivates use of the hardware threads as well as SIMDization of code.

4.1 Protein Modeling: ROSETTA

ROSETTA [16] is a library based object-oriented software suite which provides a system for
predicting and designing protein structures, protein folding mechanisms, and protein-protein
interactions. The library contains the various tools that ROSETTA uses, such as Atom,
ResidueType, Residue, Conformation, Pose, ScoreFunction, ScoreType, and so forth. These
components provide the data and services ROSETTA uses to carry out its computations. It is
currently being ported and tuned for BG/Q as part of an ANL and IBM Research collaborative
effort.

For our purposes, we have used the executable minbench part of the ROSETTA suite. The
execution of minbench involves 2 basic steps: energy minimization and subsequent energy
computation. The executable minbench works on a structure for 300 seconds, and tries to go
through as many iterations as possible of these two steps. It reports the timings as T/iterations
where T is the time taken and the iterations is the number of iterations completed.

The execution profile of minbench is thus consumed by the steps above in varying degrees based
on the size of the input. For larger inputs, the energy minimization routine (dfpmin) takes the
higher percentage of the time, while for smaller inputs the energy computation routines consume
more time.

ROSETTA’s calculations for the structure are embarrassingly parallel, and require no
communication with other structures during computation. ROSETTA currently has support for 2
partitioning policies: a master-slave policy in which the master delegates tasks to slaves upon
request, and a partitioning policy which provides subsets of the sequences to MPI processes
based on their respective MPI ranks. A master-slave policy has proven to not be sustainable at
large scale, as a single master can be overloaded with managing the slaves. To examine the
bottleneck of the single master system, we ran minbench with 2048 slaves and 6144 jobs (64
nodes, 64 processes per node – the maximum allowed on BG/Q, utilizing all 4 hardware threads
for MPI processes). In the MPI partitioning, the slave processes use MPI_Recv() for receiving

 9

job ids; thus in this case, every slave process completes 3 MPI_Recv() in total. MPI timing
data showed that the slaves were waiting to receive data from the master a large fraction of the
total elapsed time. Thus, the policy of a single master is clearly a bottleneck with a high number
of slave processes.

Since minbench has a very small memory footprint, we have been able to fit 64 MPI processes
per node on BG/Q for most inputs, except for the largest input case, where 32 tasks can fit to
perform work on every node. Essentially, despite this being a parallel MPI code, based on the
execution characteristics of ROSETTA, we are using BG/Q as a high-throughput engine, using
the maximum permissible number of processes on every node.

We have also collected machine-level characteristics for the inputs using the libhpm library on
BG/Q. In Table 3 are some of the key statistics for the smallest input as we scale the number of
tasks from 4 to 64 on a single node. As can be seen, the memory traffic increases substantially as
we increase the tasks. This leads to a significant slowdown in performance for a given number of
MPI tasks, as can be seen in the wallclock time for a fixed number of iterations in minbench
shown in Table 3. However even given this slowdown, since it is less than a factor of 4 going
from 16 to 64 processes, the highest throughput strategy is to use all 64 hardware threads as MPI
processes. Moreover we see that at that mode of usage, we are seeing close to 50% of the
maximum issue rate (mainly integer) from every core. Similar behavior is seen for the largest
input as well.

Larger input cases cannot be expected to successfully employ all available hardware threads with
MPI processes because the memory footprint grows. In fact given the 16GB per node
constraint, large enough input data sizes might not be able to work with more than 8 or even 4
MPI tasks per node. It is when looking to this future set of problems that we expect threading to
become important for ROSETTA on BG/Q. Thus the optimization strategy we are currently
pursuing is based on using portable operating system interface (POSIX) threads instead of MPI
processes within the node to do the energy calculation and minimization in ROSETTA. We
expect that using threads and shared memory will allow us to employ all hardware threads in
foreseeable cases. Given the form of parallelism ROSETTA exhibits, we also expect better
performance by going to a 1 MPI process, 64 POSIX threads per node mode of use.

4.2 Iterative Solvers: AMG2006

Algebraic multigrid (AMG) is a popular solver for large, sparse linear systems that finds use in
many science and engineering applications. It is also part of the LLNL Sequoia benchmark suite.
It extends the coverage of multigrid methods, which are fast linear solvers for structured grid
problems, to unstructured grids such as finite element meshes. What makes multigrid attractive
on HPC platforms is its ideal algorithmic scalability. When it works well, multigrid solves a
problem with n unknowns in O(n) time, making it highly suitable for solving the larger and
larger problems for which scientists and engineers are making use of ever larger parallel
machines. The key principle of multigrid is that instead of doing all the computational work on
the original “fine-grid” problem, a sequence of coarser grids is used to accelerate the overall
solution. There are a number of different cycling strategies that visit the fine-grid and coarse-grid
problems a varying number of times. As our first attempt to port and tune AMG2006 on BG/Q

 10

(as part of a research collaboration with LLNL and UIUC), we examined the simplest such
strategy, a V-cycle, which entails a sequential progression from finest to coarsest and then back
to finest. An overview of multigrid in general, along with more details about AMG, can be found
in reference [17].

AMG has scaled very well on BG/L [18] and BG/P [19] in the past, but has run into problems on
emerging multicore cluster architectures [20]. The cause was found to be a combination of
several performance limiting factors, from switching delays to contention between tasks for
resources on the interconnect [21]. This showed up the most on coarse grids, where there was a
lot more interprocess communication and far less computation than what is seen on fine grids. In
some cases, the work on coarse grid problems with only a few unknowns per core took longer
than the work on fine grid problems with tens of thousands of unknowns per core.

This naturally raises the question of how well AMG performs on BG/Q, where the number of
cores per node has increased to 16 from 2 on BG/L and 4 on BG/P. There is also the question of
how AMG performs when using the multiple hardware threads per core that are available on the
platform. A preliminary experiment, performed using AMG on a 3D 7-point Laplace model
problem with 50 × 50 × 25 points per core (the same one considered in [21]), shows us that
AMG’s scalability on BG/Q can be further enhanced. Running on 16, 128 and 1024 cores gives
us 70, 75.5 and 80.4 ms per V-cycle on BG/P; the respective times on BG/Q are 32.6, 39.0 and
47.1ms. We varied core counts on both BG/P and BG/Q, using the best mix of MPI tasks and
OpenMP threads per node for each case. The weak scaling results suggest room for improvement
in the case of BG/Q with further platform-specific optimizations.

A deeper story is told by the number and ideal mix of threads and processes on BG/Q. BG/P
supported hybrid MPI/OpenMP programming, but for AMG, the best performance always
involved running one MPI process per core also known as Virtual Node (VN) mode. BG/Q
allows for up to 64 parallel tasks per node, which can either be all MPI processes, all OpenMP
threads, or some mix of the two, and the best mix of threads and processes varied in the
experiments. When running on one node (16 cores), using 64 MPI tasks resulted in the best
performance, but for larger core counts, the performance using 32 MPI tasks per node and no
OpenMP was better. This would indicate that the interconnect has difficulty handling accesses
from too many MPI tasks. The bigger issue, though, is that the application is not successfully
making use of the available parallelism, as using 32 MPI tasks and no OpenMP means that only
half of the four hardware threads per core are being utilized effectively.

Changes will thus be needed to ensure that AMG makes full use of BG/Q and scales effectively
to it. First, since the number and ideal mix of threads and processes varies with total core count,
running AMG will need to be coupled with some form of predictive model to ensure the best
performance. Furthermore, since contention for internode communication reduces the ability of
AMG to exploit the full parallelism of the machine, some form of data redistribution will also be
necessary to reduce communication on coarse grids. Efforts are currently underway in both of
these areas.

4.3 Seismic Imaging: Reverse Time Migration (RTM)

 11

Seismic imaging is a critical element of oil and gas exploration, providing detailed three-
dimensional images of the Earth’s subsurface to locate and characterize hydrocarbon reserves.
The generation of such images, even using approximations to the true physics, is extremely
computationally intensive. In fact, many oil companies are now predicting that their
computational requirements for seismic imaging will be in the exascale range by the end of the
decade. To explore the computational requirements of seismic imaging, we have implemented on
both BG/P and BG/Q one of the most advanced algorithms used in production exploration today,
Reverse Time Migration. By taking advantage of BG/Q’s new hardware features and resources,
we have achieved a 13.4x performance speedup on node-to-node comparison over the previous
generation BG/P.

The Reverse Time Migration (RTM) algorithm [22] is known in the industry for its superior
imaging accuracy for difficult subsurface structures like salt domes which are poorly imaged by
other algorithms but which are very effective at trapping oil and gas. Several variants of RTM
exist with differing degrees of approximation to reality, all of which are based on solving the
wave equation in time and all of which use single-precision arithmetic. We implemented an
isotropic, acoustic RTM variation that makes the simplifying assumptions that the wave velocity
is independent of wave direction and that no energy is absorbed by the medium. The volume in
interest is represented by a rectangular grid that is partitioned among the available Blue Gene
nodes; MPI communication is used between each neighboring subdomain for data exchange.
The most computationally intensive part of the RTM algorithms is the simulation of the
propagation of 3D seismic pressure waves. To simulate these waves, we used an explicit, finite
difference approximation on a regular 3D grid applied to the wave equation. This approximation
gives rise to a sparse stencil along the three spatial axes, which in practice is typically selected to
be 8th order in space (i.e., a 9 x 9 x 9 stencil) or larger. This stencil size can lead to instabilities
that are handled by using small time steps, further increasing the computational demand of these
methods. The stencil calculation consumes the majority of cycles in production seismic imaging,
but fortunately is amenable to computation using SIMD. Other non-negligible operations
required at each time step in our implementation include boundary condition handling, a 3D
correlation calculation, and communication between nearest neighbor domain partitions.

In practice, production RTM 3D model sizes vary from 5123 to 10243 or larger, with thousands
or tens of thousands of time steps per simulation and tens or hundreds of thousands of
simulations required for a single imaging task. However there is a constant pressure in the
industry to grow these models to increase image resolution and to enable deeper imaging.

For performance evaluation, we used a model with 10243 grid points and only 100 time
iterations, since runtime scales almost linearly in the number of time steps. The tests were run on
a 64-node block on both BG/Q and BG/P systems. The tests on BG/P used 1, 2, and 4 cores (its
maximum) per node while the tests on BG/Q used 1, 2, up to 64 ranks/node. The results show
that RTM on BG/Q is 2.6 x faster on up to 4 ranks/node, 5 x faster for 8, 10.1 x for 16 and 12.6 x
for 32. At 64 ranks/node it enjoys a 13.4 x node-to-node speedup over BG/P.

We have also collected machine-level characteristics for the inputs using libmpihpm on BG/Q. In
Table 4 are some of the key statistics for the case of strong scaling on RTM as we scale the
number of tasks from 1 to 64 on a single node. We observe optimal performance at about 32

 12

ranks/node. In the case of strong scaling, the size of each subdomain decreases and thus the data
3 locality increases as we increase the number of tasks. We can see the changes in L1, L1P , L2
and DDR memory traffic from 4 to 16 ranks/node and how these metrics then change in a
different direction when the ranks/node go from 16 to 64. We also observed the significant
improvement in overall IPC above 16 ranks/core. All these lead to performance improvements
as well as excellent scaling properties. As we expected, being able to use multiple threads per
node helps us a great deal in the RTM workload. We have not yet investigated the
communication time carefully; we believe that there is scope for considerable improvement
there, and as we increase the number of ranks per node (therefore the total number of MPI ranks
since this experiment used a fixed 64 nodes) the communication becomes more costly. We are
therefore optimistic that we can improve the scaling of this code further.

5. Analysis and Conclusions

The central observation from the analysis of the various applications described in section 3 (as
well as others which we could not cover due to length limitations) is that the efficient use of the
four hardware threads available for each BG/Q core is key to getting good performance. By
using all four hardware threads for computation, one can often get a speed-up of ~2x (and more
in some cases) relative to using a single thread per core. With four threads working, some thread
can often make progress when another thread is stalled, resulting in good overall utilization of
the core. We see instruction throughputs in the range of 40-60% of the theoretical limit for many
applications. Although the instruction throughput per core is high, the performance per thread is
low. One must use a very large number of threads (or processes) to obtain overall high
performance on BG/Q. Speedup can be limited when there is contention among the threads for
L1 D-cache, L1P buffer, or when a node-wide resource limit (such as memory bandwidth) is
reached. Using at least two of the hardware threads per core is something that most codes
running on BG/Q should attempt to do; three or four hardware threads is normally better.

In order to utilize the extra hardware threads one has the option of using more MPI processes or
using thread-based parallelism (usually by coding in OpenMP – or even using the
autoparallelizer – though POSIX threads can also be pursued in more task-based approaches –
such as ROSETTA). The hybrid approach can help reduce contention for network resources and
intranode memory/L2 bandwidth. It offers flexibility since one can adjust the mix of MPI
process and threads to optimize performance and to make best use of the available memory.
BG/Q has many features to support effective threading, with low overhead atomic operations and
the ability for fast thread wake-up, etc.. Hence, we recommend a hybrid programming strategy
for many applications.

SIMD utilization is complex issue. The best use of SIMD instructions has been in level-3 BLAS
routines. Alignment constraints and the complexity of handling misaligned data often limit
automatic SIMDization by the compiler. In addition, memory bandwidth can easily be saturated
with scalar load/store instructions without the need for quad-word loads or stores. We suggest
that end users focus on effective threading first, and then consider the potential for SIMD
instructions, rather than focusing on single-thread performance first, and then adding additional
threads.

 13

On the communication front we have found that the 5D torus of BG/Q provides strong all-to-all
performance for those codes that require it and very nice boundary (“halo”) exchange. For
regular Cartesian topologies, boundary exchange can benefit from a specific mapping of the
ranks to the underlying hardware topology, something that is easier to accomplish on the 5D
torus as it allows several embedded 3D mappings. The 5D interconnect helps keep the maximum
number of hops in any dimension fairly small, even for rather large blocks (16 racks) of BG/Q.

In conclusion our study of scientific applications on BG/Q shows that they can attain a high
percentage of their performance potential. As Figure 2 shows, most scientific applications on
BG/Q (with the notable exception of those dominated by dense linear algebra operations on very
large matrices such as Linpack) have an instruction mix that contains a very significant fraction
of integer instructions (address calculations, load/stores, branches and other more involved book-
keeping and logic) and are more likely to stress the integer pipeline – this is in line with
independent findings [23]. In our experience so far the most useful tool for increasing
performance is the use of the SMT capability of BG/Q, either by assigning multiple MPI tasks
per core or by Hybrid (MPI/OpenMP or Pthreads) programming.

Acknowledgment

The BG/Q project has been supported and partially funded by Argonne National Laboratory and
the Lawrence Livermore National Laboratory on behalf of the U.S. Department of Energy, under
Lawrence Livermore National Laboratory subcontract no. B554331. Lawrence Livermore
National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S.
Department of Energy, National Nuclear Security Administration under Contract DE-AC52-
07NA27344.

References

[1] R.E. Walkup, "Using the mpitrace library," IBM Research Internal Report, Nov. 2011, see:
http://www.hpcx.ac.uk/support/documentation/IBMdocuments/mpitrace .
[2] J. S. Vetter, and M. O. McCracken, "Statistical Scalability Analysis of Communication
Operations in Distributed Applications," in Proc. ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming (PPOPP), pp. 123-132, 2001.
[3] D. Skinner, “Performance monitoring of parallel scientific applications,” LBNL Technical
Report, LBNL-5503, 2005.
[4] W. Gropp, D. Gunter, and V. Taylor, “FPMPI: A Fine-tuning Performance Profiling Library
For MPI,” Poster presented at SC2001, November 2001, see:
http://www.mcs.anl.gov/research/projects/fpmpi .
[5] D. Thomas, J.-P. Panziera, and J. Baron, “MPInside: a performance analysis and diagnostic
tool for MPI applications,” In Proceedings of the first joint WOSP/SIPEW international
conference on Performance engineering (WOSP/SIPEW '10), ACM, New York, NY, USA, pp.
79-86, 2001.
[6] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, "A Portable Programming
Interface for Performance Evaluation on Modern Processors," The International Journal of High
Performance Computing Applications, Vol. 14, No. 3, pp. 189-204, 2000.
[7] Available: https://asc.llnl.gov/sequoia/benchmarks/

 14

[8] Available: https://asc.llnl.gov/sequoia/benchmarks/IRS_summary_v1.0.pdf
[9] Available: https://asc.llnl.gov/sequoia/benchmarks/UMT_summary_v1.0.pdf
[10] S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics”, J. Comp.
Phys., Vol. 117, No. 1, pp. 1-19, 1995.
[11] M. Zhao, I. M. Held, S-J. Lin, and G.A. Vecchi, “iSimulations of Global Hurricane
Climatology, Interannual Variability, and Response to Global Warming Using a 50km
Resolution GCM,” J. Climate, vol. 33, pp. 6653-6678, 2009.
[12] I. M. Held, and M. J. Suarez, “A proposal for the intercomparison of the dynamical cores of
atmospheric general circulation models,” Bull. Amer. Meteor. Soc., Vol. 75, pp. 1825–1830,
1994.
[13] D. J. Kerbyson, and K. J. Barker, “A Performance Model of Direct Numerical Simulation
for Analyzing Large-Scale Systems,” In Proceedings of the 2011 IEEE International Symposium
on Parallel and Distributed Processing Workshops and PhD Forum (IPDPSW '11). IEEE
Computer Society, Washington, DC, USA, pp. 1824-1830, 2011.
[14] D. A. Donzis, P. K. Yeung, and D. Pekurovsky, “Turbulence Simulations on O(104)
Processors,” In TeraGrid 08, Jun. 2008, see:
http://computing.ornl.gov/workshops/scidac2010/presentations/d_donzis.pdf .
[15] L. Giraud, R. Guivarch, and J. Stein, “Parallel distributed FFT-based solvers for 3-D
Poisson problems in Meso-scale atmospheric simulations,” Int. J. High Perform. Comput. Appl.,
vol. 15, pp. 36-46, 2001.
[16] C. A. Rohl, C. E. M. Strauss, K. M. S. Misura, and D. Baker, “Protein structure prediction
using Rosetta,” Methods in Enzymology, Vol. 383, pp. 66-93, 2004.
[17] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid. San Diego, CA: Academic Press,
2001.
[18] R. D. Falgout. “An Introduction to Algebraic Multigrid,” Computing in Science and
Engineering, Vol. 8, no. 6, pp. 24-33, 2006.
[19] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang. “Scaling hypre’s multigrid
solvers to 100,000 cores.” In M. W. Berry, K. A. Gallivan, E. Gallopoulos, A. Grama, B.
Philippe, Y. Saad, and F. Saied, eds. High-Performance Scientific Computing. New York, NY:
Springer, pp. 261-280, 2012.
[20] A. H. Baker, T. Gamblin, M. Schulz, and U. M. Yang. “Challenges of Scaling Algebraic
Multigrid Across Modern Multicore Architectures,” in Proc. 25th IEEE International Parallel
and Distributed Processing Symposium, Anchorage, AK, pp. 275-286, 2011.
[21] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E. Jordan, and W. Gropp. “Modeling
the Performance of an Algebraic Multigrid Cycle on HPC Platforms,” in Proc. 25th ACM
International Conference on Supercomputing, Tucson, AZ, pp. 172-181, 2011.
[22] E. Baysal, D. D. Kosloff, and J. W. C. Sherwood, “Reverse-time migration,” Geophysics,
Vol. 48, pp. 1514–1524, 1983.
[23] K. Rupnow, A. Rodrigues, K. Underwood, and K. Compton, “Scientific applications vs.
SPEC-FP: a comparison of program behavior,” In Proceedings of the 20th annual international
conference on Supercomputing (ICS '06). ACM, New York, NY, USA, pp. 266-274, 2006.

Received March 26, 2012; accepted for publication September 14, 2012

 15

Figures and tables

Figure 1: UMT Figure Of Merit (FOM) values for the Sequoia benchmark as a function of the
number of hardware threads used and whether QPX was employed or not.

1 2 3 4
0.00E +00

1.00E +07

2.00E +07

3.00E +07

4 .00E +07

5.00E +07

6.00E +07

7.00E +07
UMT 	
 1-­‐node	
 F igure	
 of	
 Merit

Auto-­‐s imd
No-­‐auto-­‐s imd

T hreads/core

FO
M

 16

Metrics 1

thread
/core
MPI

2
threads
/core
MPI

4 threads
/core
MPI

1 thread
/core
Hybrid

2 threads
/core
Hybrid

4 threads
/core
Hybrid
only

Weighted Gflop/s per
node	

2.543 3.922 5.729 2.456 4.015 6.077

Relative speedup	
 1.000 1.541 2.229 1.000 1.630 2.458
IPC per core	
 0.230 0.356 0.554 0.234 0.372 0.567
% Max Issue Rate	
 22.99 25.38 40.41 23.40 26.56 40.68
Relative total instruction
count	

1.000 1.006 1.071 1.000 0.973 0.986

Relative FPU instruction
count	

0.290 0.290 0.290 0.277 0.277 0.279

L1 D-cache hit %	
 93.10 88.77 84.22 93.09 90.40 87.95
L1P buffer hit %	
 0.84 0.85 0.59 0.84 1.11 1.22
L2 cache hit %	
 5.87 10.07 14.77 5.57 7.98 10.29
DDR traffic %	
 0.19 0.31 0.42 0.51 0.52 0.54
DDR loads
(bytes/cycle/node)	

0.61 1.16 2.17 1.05 1.57 2.68

DDR stores
(bytes/cycle/node)	

0.17 0.33 0.61 0.44 0.77 1.32

DDR total
(bytes/cycle/node)	

0.78 1.49 2.78 1.49 2.35 4.00

Table 1: Performance characteristics for LAMMPS

 17

Application Q/P ratio comments
DNS3D 16.9 2048^3 problem, 8K cores, 64 ranks/node
FLASH 5.9 rtflame, 2K cores, 64 ranks/node, no MPI-IO
GFMC 10.5 c12-test, 2K cores, 8 ranks/node, some QPX
GPAW 8.5 Using early ESSL libraries, 32 ranks/node
GTC 11.2 M0180 problem, 2K cores, 16 ranks/node, 4thds
GFDL 14.2 16K cores, 8 ranks/node, 8 thds
LS3DF 8.1 Using GPFS ; performance sensitive to I/O
MILC 6.1 32^3 x 64 problem, 2K cores, 64 ranks/node, no QPX
NAMD 8.5 atpase, 2K cores, 32 ranks/node, no code tuning
NEK 7.4 medium case, 2K cores, 32 ranks/node, some QPX

Table 2: Relative speedup per node (peak scaling is ~15x per node) for Mira SoW
applications.

 18

Proc
esses
/Nod
e

FPU
Instr
%

FXU
Instr
%

Weighted
Gflops
per node

%
Max
Issue
Rate

L1
Cache
hit rate

L2
Cach
e Hit
Rate

DDR
 %

Ld
(bytes
/cycle
)

St
(bytes
/cycle
)

Total
(bytes
/cycle
)

Time
for 200
iteration
s

4 16.17 83.83 0.293 24.41 92.29 7.71 0 .007 .001 .009 1.92
8 15.23 84.77 0.544 24.08 92.73 7.27 0 .193 .012 .205 1.99
16 14.43 85.57 .885 20.69 93.17 5.98 0.85 2.28 .19 2.48 2.42
32 12.38 87.62 1.32 31.48 93.04 5.72 1.25 5.28 .38 5.66 3.01
64 11.41 88.59 1.83 47.62 91.72 7.14 1.13 8.97 .59 9.57 4.18	

 Table 3: Performance characteristics for ROSETTA (20.pdb, small input case).

 19

Processes/Node 1 2 4 8 16 32 64
FPU Instr % 51.77 51.45 50.60 41.99 40.98 38.14 30.02
FXU Instr % 48.23 48.55 49.40 58.01 59.02 61.86 69.98
Intr/Cycle per Core 0.3272 0.3220 0.3296 0.3929 0.3843 0.5047 0.6325
%Max Issue Rate 32.72 32.20 32.96 39.29 38.43 31.22 44.26
Total Weighted
Gflops/Node

1.383 2.702 5.427 10.735 20.949 25.056 24.648

L1 Cache Hit Rate 82.84 82.71 83.71 88.00 88.02 84.94 83.36
L1 P Buffer Hit Rate 9.77 9.82 9.92 10.79 10.70 6.30 2.83
L2 Cache Hit Rate 6.87 6.89 5.72 0.63 0.66 7.54 11.94
DDR % 0.53 0.58 0.65 0.58 0.62 1.22 1.87
LD (Byte/Cycle) 0.263 0.529 1.132 2.529 5.053 6.517 7.435
ST (Byte/Cycle) 0.100 0.196 0.407 0.957 1.956 2.535 3.085
Total (Byte/Cycle) 0.362 0.725 1.539 3.486 7.009 9.052 10.52
Total Run Time (Less
Init and Final I/O)

111.33 56.77 28.4 14.38 7.52 6.02 5.68

Node-to-Node
Speedup over BGP

2.6 2.6 2.7 5.3 10.1 12.6 13.4

 Table 4: Performance characteristics for RTM.

 20

Figure 2: Applications can get a good fraction of the maximum issue rate out of every core, as
long as multiple hardware threads are used effectively : average is ~45% max IPC.

AMG
DNS 3D

GFMC
GT C

IR S
LAMMP S

UMT
L INP ACK

GR APH500

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

% S tores
% Loads
% Integer
% F PU
% DDR 	
 bw
%Max	
 IP C
% Max	
 F lops

 21

Constantinos Evangelinos IBM Research Division, One Rogers St., Cambridge, MA 02142-
1203 (cevange@us.ibm.com) Dr. Evangelinos is a Research Staff Member in the High
Performance Computing Applications and Tools group of the Computational Science Center at
the IBM T.J. Watson Research Center. He received a B.A. Degree in mathematics from
Cambridge University and Sc.M. and Ph.D. degrees in applied mathematics from Brown
University. He then worked as a Postdoc and a Research Scientist at the Massachusetts Institute
of Technology until the end of 2010 before joining IBM. His current research interests are in
parallel computing and performance modeling applied to computational methods for fluid flow
(both CFD and GFD), data assimilation, adjoint techniques and automatic differentiation. He is a
member of the IEEE Computer Society and the Association for Computing Machinery (ACM).

Robert E. Walkup IBM T.J. Watson Research Center, 1101 Kitchawan Rd. Yorktown Heights,
NY, 10598 (walkup@us.ibm.com) Dr. Walkup is a Research Staff Member at the IBM T.J.
Watson Research Center. He has extensive experience in both benchmarking and porting
scientific and technical applications for the IBM pSeries and Blue Gene. He has been
instrumental in tuning DOE codes for IBM platforms over the past few decades. His interests
include code optimization, MPI and OpenMP performance issues, and performance bottlenecks.
Bob obtained a Ph.D. degree in physics from Massachusetts Institute of Technology and has
published papers involving both experimental and computational physics.

Vipin Sachdeva IBM Research Division, One Rogers St., Cambridge, MA 02142-1203
(vsachde@us.ibm.com) Vipin Sachdeva is a Senior Engineer in IBM Systems and Technology
Group specializing in High-Performance Computing working as part of an extended team in the
Computational Science Center at IBM T.J. Watson Research Center. He received his Master of
Sciences from the University of New Mexico in 2005 with distinction. He is currently working
on a Ph.D. in the area of computational science at Georgia Institute of Technology. He is a co-
author of several papers in the area of applying high-performance computing to computational
science areas including bioinformatics, computational fluid dynamics, reservoir simulation and
seismic processing. His work has been recognized with awards including HPC Challenge Class 2
awards at Supercomputing 2007, IEEE Scale2011 Challenge and the IBM Outstanding
Technology Achievement Award in 2011. His research interests include applying high-
performance computing in analytics, and running commodity software efficiently on advanced
supercomputers.

 Kirk E. Jordan IBM Research Division, One Rogers St., Cambridge, MA 02142-1203
(kjordan@us.ibm.com) Dr. Jordan is Emerging Solutions Executive and Associate Program
Director in the Computational Science Center at IBM T.J. Watson Research Center. He oversees
development of applications for IBM’s advanced computing architectures, investigates and
develops concepts for new areas of growth involving high performance computing (HPC), and
provides leadership in high-end computing and simulation in such areas as computational fluid
dynamics, systems biology and high-end visualization. Dr. Jordan is a member of the IBM
Academy of Technology. With a Ph.D. in Applied Mathematics, he held computational science
positions at Exxon R&E, Argonne National Lab, Thinking Machines and Kendall Square
Research before joining IBM in 1994. He holds leadership positions in the Society for Industrial

 22

and Applied Mathematics (SIAM), including Chair of Computational Science and Engineering
SIAG, member of the Committee on Science Policy and is a SIAM Fellow. He is on several
boards including Chair of the Board of Trustees for the Mathematical Biosciences Institutes at
The Ohio State University. He is associate editor of several international journals and Guest
Editor for two recent issues of IBM’s Journal for Research and Development. His research
interests include developing techniques for the efficient use of advanced architecture computers
for modeling and simulation physical and biological phenomena.

Hormozd Gahvari Computer Science Department, University of Illinois at Urbana-
Champaign, Urbana, IL, 61801 (gahvari@illinois.edu) Hormozd Gahvari is a Ph.D. Candidate in
Computer Science at the University of Illinois at Urbana-Champaign. His research focuses on
high-performance computing applications and how they would have to change to adapt to future
machines, especially exascale systems. For his dissertation, he is working on adjustments to
algebraic multigrid to enable its scalability to next-generation parallel machines. He has spent
three summers with the hypre team at Lawrence Livermore National Laboratory and with
researchers at IBM working on these techniques.

I-Hsin Chung IBM T.J. Watson Research Center, 1101 Kitchawan Rd. Yorktown Heights, NY,
10598 (ihchung@us.ibm.com) Dr. Chung is a Research Staff Member at the IBM Thomas J.
Watson Research Center. His research interests include performance tuning, performance
analysis, and performance tools. His experience includes designing and developing performance
tools on IBM platforms such as IBM Power Systems on AIX and Linux, and the Blue Gene
systems. Prior to joining IBM Research, he received his Ph.D. in Computer Science from the
University of Maryland, College Park in 2004.

Michael P. Perrone IBM T.J. Watson Research Center, 1101 Kitchawan Rd. Yorktown Heights,
NY, 10598 (mpp@us.ibm.com) Dr. Perrone is an IBM Master Inventor with over 20 years of
experience in computer science, including 8 years in high performance computing and 6 years in
seismic imaging. His mission, as manager of IBM Research Multicore Computing, is to drive
exascale architectural co-design by performing detailed exploration of a wide variety of customer
computational workloads, identifying specific actionable hardware requirements and to drive
these requirements into next generation hardwired system designs. This work has lead to deep
insight into algorithmic optimization techniques, including the analysis of multicore strengths
and weaknesses, and has led to the design of novel supercomputing algorithms. His team has
won the Graph500 competition three times in a row, and has developed ground breaking
algorithms for stream processing, including OPRA. His recent projects cover a variety of HPC
workloads, including business analytics, graph algorithms, network intrusion detection, financial
data stream processing, high-speed text indexing, seismic imaging, reservoir modeling,
computational fluid dynamics, image processing, carbon sequestration and bioinformatics. His
research includes algorithmic optimization for a variety of multicore processors, parallel
computing and statistical machine learning. He received his PhD in Physics from Brown
University.

Ligang Lu IBM T.J. Watson Research Center, 1101 Kitchawan Rd. Yorktown Heights, NY,
10598 (lul@us.ibm.com) Dr. Lu is a Research Staff Member in the Computational Science
Center at IBM T.J. Watson Research Center, Yorktown Heights, NY. His research interests

 23

include high performance computing in seismic imaging, data analytics, and video/imaging
processing. He received a Ph.D. degree in Electrical Engineering from Rensselaer Polytechnic
Institute (RPI), Troy, NY, where he received the Allan Dumont Prize for outstanding
achievement. He was a past Chair of the IBM Research Signal Processing PIC and has served as
a co-chair of VCIP 2008 as well as Technical/Program Committees for ICIP, VCIP, ICASSP,
ICME, etc. He received an Outstanding Technical Innovation Award, a Patent Award, and
numerous Invention Awards.

Lurng-Kuo IBM T.J. Watson Research Center, 1101 Kitchawan Rd. Yorktown Heights, NY,
10598 Dr. Lurng-Kuo received an M.S. degree from National Chiao Tung University, Hsin-Chu,
Taiwan, in 1987, and a Ph.D. degree in computer engineering and communications from the
University of Maryland, College Park in 1993. He worked as a solutions architect at the IBM T.J.
Watson Research Center, where he specialized in high performance computing and multicore
computing solutions, covering multiple industrial workloads including Financial Services
Modeling and High Frequency Trading, Digital Media, Seismic, Stream Processing, and Low
Latency Messaging. He previously worked as a program manager for IBM’s Blue Gene (BG/L)
System. In addition, he served as an adjunct professor at Fordham University, Columbia
University, and the Polytechnic Institute of New York University. He also served as visiting
professor at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia,
where he taught high performance computing and parallel programming paradigms. Kurng-Kuo
passed away in 2012.

Karen Magerlein IBM T.J. Watson Research Center, 1101 Kitchawan Rd. Yorktown Heights,
NY, 10598 (kmager@us.ibm.com) Karen Magerlein is an advisory engineer with the Multicore
Computing Department at the Thomas J. Watson Research Center. She received a B.S. degree in
computer science from Duke University in 1980 and joined IBM’s Research Division the same
year. She worked on programming tools, binary image manipulation, the JPEG compression
standard, and image processing software for digital library applications before adopting her
current focus on application programming for multicore computers. She completed her M.S.
degree in computer science at Columbia University in 1995, and is a co-author on over 30
articles and patents.

